メインコンテンツまでスキップ

遺伝研スパコンでのalphafold 2.1の実行

概略

遺伝研スパコンでは🔗alphafold 2.1(Yoshitaka Moriwaki氏の🔗パッチ適用済み)をインストールしたsingularity imageとalphafold 2.1で使用するデータベースを /lustre7/software/alphafold/2.1.1/ に用意しています。

alphafold 2.1によるタンパク質の立体構造予測は以下のステップで実行されます。

  1. jackhmmerによるuniref90データベースを対象とした入力アミノ酸配列の検索(CPU使用)
  2. jackhmmerによるmgnifyデータベースを対象とした入力アミノ酸配列の検索(CPU使用)
  3. hhsearchによるpdb70データベース(単量体の場合)またはpdb_seqresデータベース(多量体の場合)を対象とした入力アミノ酸配列の検索(CPU使用)
  4. hhblitsによるbfdデータベース・uniclust30データベースを対象とした入力アミノ酸配列の検索(CPU使用)
  5. 構造テンプレートをpdb_mmcifデータベースより検索(CPU使用)
  6. jackhmmerによるuniprotデータベース(多量体の場合)を対象とした入力アミノ酸配列の検索(CPU使用)
  7. 機械学習による立体構造予測(CPUまたはGPU使用)
  8. OpenMMによる構造最適化(CPUまたはGPU使用)

入力アミノ酸配列が多量体の場合、ステップ1-6は多量体を構成するサブユニットのアミノ酸配列ごとに実行されます。

デフォルトの設定では5つのモデルの構造予測を行うため、ステップ7・8は5回実行されます。また、ステップ7・8はCPUの他にGPUを使用できるため、CPU用とGPU用のsingularity imageをそれぞれ用意しています。

(実行時間の目安)

入力ファイルの準備

立体構造を予測するタンパク質のアミノ酸配列を1ファイルのfasta形式で用意してください。対象タンパク質が多量体の場合は、構成するサブユニットのアミノ酸配列をすべて1ファイルに入力してください。同じサブユニットを複数含む場合は、その数だけ該当するサブユニットのアミノ酸配列を入力してください。

(入力ファイルのサンプル)

ジョブスクリプトの準備

/lustre7/software/alphafold/にジョブスクリプトのサンプルを用意しています。こちらを自分のホームにダウンロードして適宜修正して使用してください。

example_job_script_cpu.sh

GPUを使用しない場合のジョブスクリプトです。

#!/bin/sh
#$ -S /bin/sh
#$ -cwd
#$ -l s_vmem=160G
#$ -l mem_req=8G
#$ -pe def_slot 16

FASTAFILE="${HOME}/input/test.fasta"
OUTPUTDIR="${HOME}/output"
DATE="2021-11-12"
MODEL="monomer"

export OPENMM_CPU_THREADS=16

singularity exec \
-B /lustre7/software/alphafold/database:/data1/database \
/lustre7/software/alphafold/alphafold-2.1-CPU.sif \
/opt/alphafold/bin/alphafold \
--fasta_paths=${FASTAFILE} \
--output_dir=${OUTPUTDIR} \
--model_preset=${MODEL} \
--max_template_date=${DATE}

修正箇所

#$ -pe def_slot 16
export OPENMM_CPU_THREADS=16

使用するCPUコア数を16以上128以下で入力してください。両方の行に同じ数値を入力してください。

この値はステップ8で使用するCPUコア数を決定します。この値が大きければ大きいほどステップ8の処理が速くなります。

#$ -l s_vmem=160G

2560G / def_slotの値 を入力してください。

#$ -l mem_req=8G

128G / def_slotの値 を入力してください。

FASTAFILE="${HOME}/input/test.fasta"

入力ファイルのパスを入力してください。

OUTPUTDIR="${HOME}/output"

結果を出力するディレクトリのパスを入力してください。

このディレクトリ内に入力ファイル名から拡張子を除いた名前でディレクトリが作成され、結果が出力されます。同じ名前のディレクトリが既に存在し、その中に計算結果が入っていた場合、類縁配列の検索(ステップ1-6)は行われず立体構造の予測部分(ステップ7・8)のみ再計算されます。

DATE="2021-11-12"

立体構造の予測に使用するPDBの構造データのリリース日の上限を指定してください。この日付よりリリース日が新しい構造データは使用されません。

MODEL="monomer"

入力ファイルの内容に従って単量体タンパク質の構造予測の場合はmonomer、多量体タンパク質の構造予測の場合はmultimerを入力してください。

example_job_script_gpu.sh

GPUを使用する場合のジョブスクリプトです。gpu.qでジョブを実行します。

#!/bin/sh
#$ -S /bin/sh
#$ -cwd
#$ -l gpu
#$ -l cuda=1
#$ -l s_vmem=320G
#$ -l mem_req=16G
#$ -pe def_slot 8

FASTAFILE="${HOME}/input/test.fasta"
OUTPUTDIR="${HOME}/output"
DATE="2021-11-12"
MODEL="monomer"

singularity exec \
--nv \
-B /lustre7/software/alphafold/database:/data1/database \
/lustre7/software/alphafold/alphafold-2.1-GPU.sif \
/opt/alphafold/bin/alphafold \
--fasta_paths=${FASTAFILE} \
--output_dir=${OUTPUTDIR} \
--model_preset=${MODEL} \
--max_template_date=${DATE}

修正箇所

#$ -l cuda=1

構造予測するタンパク質の大きさが1000アミノ酸残基程度までは cuda=1 で実行可能です。GPUのメモリ不足でエラーになった場合、数を増やして実行してください。

FASTAFILE="${HOME}/input/test.fasta"

入力ファイルのパスを入力してください。

OUTPUTDIR="${HOME}/output"

結果を出力するディレクトリのパスを入力してください。

このディレクトリ内に入力ファイル名から拡張子を除いた名前でディレクトリが作成され、結果が出力されます。同じ名前のディレクトリが既に存在し、その中に計算結果が入っていた場合、類縁配列の検索(ステップ1-6)は行われず立体構造を予測する処理(ステップ7・8)のみ再計算されます。

DATE="2021-11-12"

立体構造の予測に使用するPDBの構造データのリリース日の上限を指定してください。この日付よりリリース日が新しい構造データは使用されません。

MODEL="monomer"

入力ファイルの内容に従って単量体タンパク質の構造予測の場合はmonomer、多量体タンパク質の構造予測の場合はmultimerを入力してください。

ジョブの実行

ジョブスクリプトをqsubコマンドでUGEに投入してください。

$ qsub example_job_script_cpu.sh
$ qsub example_job_script_gpu.sh

出力例

入力ファイル

test.fasta

出力ファイル

ranking_debug.txt←JSONファイルで出力されます

ranked_4.pdb

ranked_3.pdb

ranked_2.pdb

ranked_1.pdb

ranked_0.pdb

入力ファイルと同一アミノ酸配列(近縁種)のタンパク質のPDBエントリー

🔗https://www.rcsb.org/structure/3AS4

🔗https://www.rcsb.org/structure/3AS5

当ウェブサイトでは、お客様により良いサービスを提供するため、クッキーを利用しています。 クッキーの利用に同意いただける場合は「同意する」をクリックしてください。